
STPA-Sec

stealing from safety engineering
to improve threat modeling

Journey: Aviation Safety

Journey: Systems Safety

“How Complex Systems Fail,” 
Richard I Cook, MD

http://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf

Engineering a Safer World, 
Nancy G Leveson 
https://mitpress.mit.edu/sites/default/files/titles/free_download/
9780262016629_Engineering_a_Safer_World.pdf

2016 STAMP Workshop 
http://psas.scripts.mit.edu/home/2016-stamp-workshop/

Why STAMP?

STAMP Tools

•  STAMP: Causality Model

•  CAST: Accident Analysis

•  STPA: Hazard Analysis

•  STECA: Early Concept Analysis

•  STPA-Sec: Security Analysis

•  Leading Indicators

Heinrich's Domino model

Swiss Cheese model

Organized Complexity

STAMP model

STAMP Assumptions

Old Assumption New Assumption
Safety is increased by increasing
system or component reliability; if
components do not fail, then accidents
will not occur.

High reliability is neither necessary nor
sufficient for safety.

Accidents are caused by chains of
directly related events. We can
understand accidents and assess risk
by looking at the chains of events
leading to the loss.

Accidents are complex processes
involving the entire sociotechnical
system. Traditional event-chain
models cannot describe this
process adequately.

Probabilistic risk analysis based on
event chains is the best way to assess
and communicate safety and risk
information.

Risk and safety may be best
understood and communicated in
ways other than probabilistic risk
analysis.

STAMP Assumptions

Old Assumption New Assumption
Most accidents are caused by
operator error. Rewarding safe
behavior and punishing unsafe
behavior will eliminate or reduce
accidents significantly.

Operator error is a product of the
environment in which it occurs. To
reduce operator “error” we must
change the environment in which the
operator works.

Highly reliable software is safe. Highly reliable software is not
necessarily safe. Increasing software
reliability will have only minimal impact
on safety.

STAMP Assumptions

Old Assumption New Assumption
Assigning blame is necessary to learn
from and prevent accidents or
incidents.

Blame is the enemy of safety. Focus
should be on understanding how the
system behavior as a whole
contributed to the loss and not on who
or what to blame for it.

Major accidents occur from the chance
simultaneous occurrence of random
events.

Systems will tend to migrate toward
states of higher risk. Such
migration is predictable and can be
prevented by appropriate system
design or detected during
operations using leading indicators
of increasing risk.

Security vs Safety

 Security: Layered defenses
against possible attacks

Safety: Keep system out of
hazardous state

STPA-SEC EXAMPLE

A walkthrough of STPA-Sec using a simple banking application

Accidents, Hazards, Constraints

•  A1: Loss of money from bank account

•  A2: Loss of privacy, banking data exposed 

•  H1: Unintended payment of funds

•  H2: Failure to receive deposits

•  H3: Data exposed to unauthorized party 

•  C1: System must prevent unintended debits

•  C2: System must fully credit accounts

•  C2: System must not expose transaction details

Deposit – Unsafe Control Actions

Control Action CREDIT
Not Provided

Provided

Timing

Duration

Deposit – Unsafe Control Actions

Control Action CREDIT
Not Provided UCA1: Software

does not credit
account when
user provides
valid deposit (H2)

Provided No Hazard
Timing No Hazard
Duration UCA2: Software

does not credit
full amount when
user provides
valid deposit (H2)

Payment – Unsafe Control Actions

Control Action DEBIT
Not Provided

Provided

Timing

Duration

Payment – Unsafe Control Actions

Control Action DEBIT
Not Provided No Hazard
Provided UCA3: Software

debits account
when user has
not requested a
payment (H1)

Timing No Hazard
Duration UCA4: Software

debits more than
full amount when
user has
requested a
payment (H1)

Unsafe Control Actions

Control
Action

Not Provided Provided Timing Duration

Credit
(Deposit)

UCA1: Software
does not credit
account when
user provides
valid deposit (H2)

No Hazard No
Hazard

UCA2: Software does
not credit full amount
when user provides
valid deposit (H2)

Debit
(Payment)

No Hazard UCA3: Software
debits account
when user has
not requested a
payment (H1)

No
Hazard

UCA4: Software
debits more than full
amount when user
has requested a
payment (H1)

Generating Scenarios with STRIDE

Spoofing Tampering Denial of Service

UCA1 S1: Attacker spoofs bank
software and user
(MITM) and changes
deposit/payment

S2: Attacker alters
deposit/payment
command

S3: Attacker blocks
deposit command

UCA2 S1: Attacker spoofs bank
software and user
(MITM) and changes
deposit/payment

S2: Attacker alters
deposit/payment
command

N/A

UCA3 S4: Attacker spoofs user
and provides payment
command

N/A N/A

UCA4 S1: Attacker spoofs bank
software and user
(MITM) and changes
deposit/payment

S2: Attacker alters
deposit/payment
command

N/A

Scenarios

•  S1: Attacker spoofs bank software and

user (MITM) and changes deposit/
payment

•  S2: Attacker alters deposit/payment
command

•  S3: Attacker blocks deposit command

•  S4: Attacker spoofs user and provides

payment command

Wait!

•  Repudiation: skipped, doesn’t impact

hazards we identified

•  Elevation of Privilege: skipped, doesn’t

make sense in the context of the system

•  Information Disclosure: hmm…

Deposit – UCA v2

Control Action CREDIT

Not Provided UCA1: Software does
not credit account
when user provides
valid deposit (H2)

Provided No Hazard

Timing No Hazard

Duration UCA2: Software does
not credit full amount
when user provides
valid deposit (H2)

Intercepted

Deposit – UCA v2

Control Action CREDIT

Not Provided UCA1: Software does
not credit account
when user provides
valid deposit (H2)

Provided No Hazard

Timing No Hazard

Duration UCA2: Software does
not credit full amount
when user provides
valid deposit (H2)

Intercepted UCA5: Software
discloses account
balance and/or
transaction details
(H3)

Payment – UCA v2

Control Action DEBIT

Not Provided No Hazard

Provided UCA3: Software
debits account when
user has not
requested a payment
(H1)

Timing No Hazard

Duration UCA4: Software
debits more than full
amount when user
has requested a
payment (H1)

Intercepted

Payment – UCA v2

Control Action DEBIT

Not Provided No Hazard

Provided UCA3: Software
debits account when
user has not
requested a payment
(H1)

Timing No Hazard

Duration UCA4: Software
debits more than full
amount when user
has requested a
payment (H1)

Intercepted UCA5: Software
discloses account
balance and/or
transaction details
(H3)

Generating Scenarios v2

Spoofing Tampering Information

Disclosure
Denial of Service

UCA1 S1: Attacker
spoofs bank
software and user
(MITM) and
changes deposit/
payment

S2: Attacker alters
deposit/payment
command

N/A S3: Attacker
blocks deposit
command

UCA2 S1: Attacker
spoofs bank
software and user
(MITM) and
changes deposit/
payment

S2: Attacker alters
deposit/payment
command

N/A N/A

UCA3 S4: Attacker
spoofs user and
provides payment
command

N/A N/A N/A

Generating Scenarios v2

Spoofing Tampering Information

Disclosure
Denial of Service

UCA4 S1: Attacker
spoofs bank
software and user
(MITM) and
changes deposit/
payment

S2: Attacker alters
deposit/payment
command

N/A N/A

UCA5 S5: Attacker
spoofs user and
reads balance/
transaction

N/A S6: Attacker
reads deposit/
payment
command

S7: Attacker
reads balance/
transaction
reply

N/A

Scenarios

•  S1: Attacker spoofs bank software and user

(MITM) and changes deposit/payment

•  S2: Attacker alters deposit/payment command

•  S3: Attacker blocks deposit command

•  S4: Attacker spoofs user and provides payment

command

•  S5: Attacker spoofs user and reads balance/

transaction

•  S6: Attacker reads deposit/payment command

•  S7: Attacker reads balance/transaction reply

Observations

STPA-Sec

Pro Con
More efficient, effective at
systematically modeling
system and identifying
unsafe system states

Does not account for
information disclosure
(generally not a safety
concern) in current model

Useful for both engineering
and failure analysis

Does not provide methods
for prioritization

Accounts for human
behavior – the sociotechnical
system

Not widely adopted; primarily
an academic model today

Avoids blame

Thank You!

Contact Information:

John Benninghoff

john@transvasive.com

http://transvasive.com

https://information-safety.org

Twitter: @transvasive

